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ABSTRA CT

The problem of modeling and processing radar images for tracking ap-

plications has been considered . Digital simulation experiments have been

carried out for area correlation of a reference target image with on-board

radar acquired images. Effects of misregisterations of radar height (scaling)

and orientation (rotation) and those of high pass filtering of images have

been studied. Use of image models based on finite difference approximation

of partial differential equations (PDE5) has also been stud ied.

KEY WORDS: Image Modeling ; Area Correlation; Radar Image Processing
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I. SUMMARY

During the duration of this project the following progress has been

made.

1. The problems associated with the overall goal of Forward Looking Radar

Image Modeling and their real time simulation have been identified .

The basic problems are:

a) Modeling and Ident i f icat ion of the Point Spread Function (PSF)
of the FLR seeker.

b) Stochastic Mode ling of Image Fie lds and their use in image re-
storation and system identification

c) Hardware encoding of FLR image model for real time RF simulation

2. A mathematical formulation of a typical FLR image has been developed .

The FLR image can be synthesized d ig i ta l ly  us ing this mode l. and a

reference S ide Looking Radar (SLR) image . The model can also be

identified if the statist ical  properties of SLR image are known .

The unde r ly ing iden t i f i ca tion scheme would requi re a s ta t ist ical

mode l for two d imensiona l image f ields.  The FLR images are used

for re-entry vehicle guidance via area correlation techniques. For

a high s ignal to noise ratio of correlation peaks the FLR image

(which is generally quite blurred) should be restored (or enhanced).

Image restoration algorithms have been stud ied in this period using

some new image models and some new algorithms have been shown to be

associated with these models. (see attached list of publications).

Further work is required to consider restoration schemes which in-

clude space varying nature of the point spread function (PSF) of the

FLR imaging system.

1
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• 3. The problem of stochastic image modeling has been stud ied in the

• framework of stochastic par t ia l  d i f f e r en t i a l equation s . Our re-

suits show that these models are quite effective and are often

better than conventiona l image covariance models. These models

have been applied for restoration of noisy images. Further work

is required for application of these models to restoration of

FLR Images and for further refinement models.

4. Collaborative efforts were made with the Radio Frequency Simula-

tion System (RFSS) laboratory of the Advanced Simulation Center

(ASC) of the U.S.  Missile Research and Development Command

(MI RADCOM) for hardware in the loop simulation of the FLR image

data. These efforts have produced a design of methodology of RFSS

configuration to generate RF signals which represent FLR image

data . Harware design for transmission and reception of these

signals still needs to be accomplished .

Personnel Supported During this Period

1. A.K. Jam - Project Director

2. J.R. Jam - Graduate S tudent

3. S.H. Wang - Graduate Student

4. R. Maed l - Technical and Secretarial Support
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II. FORWA RD LOOKING RA DA R IMAGE MODELING AND SIMU LATION

2. 1 Introduc t ion

it  is wel l  known that  fo r mi s s i l e  and a i r c ra f t  guidance the area cor-

re la t ion  be tween a target refe rence image , alread y stored in the vehicle ,

and a targe t image acqui red by an on-board sensor could be u t i l i z e d . The

cross-correlat ion fu nction of the two images Is f i r s t  obta ined and the peak

~“~.Iue of . his fu nction , indica t ing  a match betwee n the two images is

located . The peak location is used to guide the vehicle in the d i rect ion

of the ta rget. I t  is assumed that a s i g n i f i c a n t  area of the target image

is w i t h i n  the range of the on-board re ference image ; otherwise , no peak

(or a fa l se  peak) could be located . Typ ica l l y ,  this  technique is used in

the termina l phase o f the f l i g h t .

For many termina l guidance app l ica t ions  the reference image is of ten

generated by a side looking radar (SLR) or a h ig h r e so lu t ion  sensor , whi le

• the on-board sensor is a forward looking radar (FLR) with significantl y re-

duced resolution. A pplication of area corre lation for guidance , therefore ,

requires  an unders tanding of in teract ions  between the actua l scene and the

radar sensing process. Also important for obtaining a good corre la t ion

peak is the prope r regis terat ion of the two images. In practice two form s

of misregis tera t ions, name ly, scaling and rotat ion of one image wi th  respect

to anothe r are common. So it becomes impo rtant  to know the e f fec t s  of

the se misregis tera t ions  on the detect ion and the location of the peak . Here

we report the resul ts  of the computer s imula t ion  experiments carried out  to

study the ef fects of FLR parameters , scali ng, rotation and the f i l t e r i n g  of

FLR images on the area correlat ion .

In section 2.2 we describe the theoretical formulation of the experi-

ments and the necessary assumptions . Modeling of FLR images from a given

4 
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SLR image is b r i e f ly described in Section 2.3.  Experi mental results of

computer simulations are summarized in Section 2.4. Conclusions and sug-

gested fu ture  work are given in Section 2.5.

2 .2  Area Correlation

Let u(x,y) and v(x,y) denote the reference and the on-board generated

images respectively. Then their area correlation function, denoted by r(x ,y),

is g iven by

.~~~
, •

~~~

r (x ,y) = \ ~ u(x’,y”)v(x + x / , y + y’)dx ’dy ’. (1)

In practice the images are available onl y over a f in i te  area and hence the

integration in (1) is performed on ly on the ava i lable area. For digita l

processing we appr:ximate the integration in (1) by a summation given by

• r(m ,n) = ~ u(k,L)v(k-I-m- l , L + n- l) ,  ~ - I � m , n � , (2)
k=1i=L

whe re the ava i lable reference SLR signa l has been dig itized to N x N samples.

Evaluation of r(m ,n) using (2) requires the knowled ge of one of the images

over a larger area than the other. If bo th images are available over the

same a rea , as is assumed in our experiments , then replacing the function

• v(i,j) by its two dime nsional periodic repet i t ion , allows one to compute

(2) e f f i c i e n t ly using discrete Fourier trans form . If U(m ,n) and V(m ,n)

denote the discrete Fourier transform (DFT ) of sequences u(k ,L) and v(k , t)

respectively, then

R(m ,n) = U*(m , n)V( cn ,n) , 1 c m , n � N (3)

• gives the DF~ of r (k ,L ) ,  where * dentoes the complex conjugate . The dis-

cre te correlation function r(k,L) could then simply be computed by taking

S
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the inverse Dfl of R(m,n). The use of fast Fourier transform (FFT) algorithm

reduces the computation of (2) from N4 to 0(N
2
log2

N). It should be noted

that r(k,L) computed as above is not centered around the origin. This

could easily be done by shifting the samples in each coordinate axes by

N and reindexing .

2.2. 1 Ef fec t  of Scaling

The ef f ec t  of misregis terat ion of radar heights , at which the reference

and the on-board images are generated , is equivalent to scaling the axes of

one of the images re lative to the others. We assume the scaling of the

reference image . A d ig i ta l scaled image , wi th  a scale factor of s > 0 ,

could be app roximated by

u5 (k ,L) = u(~ skJ , L~~i) (4)

where ~aJ denotes the highest integer less than or equal to a.

2 .2 .2  Ef fec t  of Rotation

Another common form of misregis terat ion is the rotation of the live

image with respect to the reference image along the vertica l axis of FLR.

As FLR images are rad ially scanned the rotation could be easily accomplished

in polar coordinates. Let

v(r,e)  = v(rcosB , r smne )

then an FLR image rotated by an angle cp with respect to the reference image

in clockwise direction is given by

v ( r ,e) = ‘~(r ,8-q )

and

6
I
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v~ (x ,y) = v ( ~~~~~~~~ , arct an(y/x) ) .

2 .2 . 3  Enhancement of FLR Images

As noted earlier, the on-board generated FLR images have a poor reso-

• lution compared with the reference images. It is intuitively clear then,

and also would be seen in the next section, that the resulting correlation

• function would not yield a desirable sharp peak and could even give a false

peak. To remedy this it is desirable to enhance by some sort of high pass

• filtering of the FLR images before correlating them with reference images.

There are various image enhancement techniques that are available in the

l i terature. A class of techniques , known to be effective for blurred images

• performs filtering in the Fourier domain. This could be profitably exploited

in our case as we are already taking the Fourier transform to get the cor-

relation function. If V(m,n) is the DFT of the discrete FLR image, then a

typical Fourier domain filter, is

VF (m ,n) = F(V(m ,n))

where F denotes a f i l t e r  funct ion , which could be linear or non-linear. An

example of linear filter is the Wiener filter. A nonlinear high pass filter

is, for example , the so-called a-filter given by

Va(m,n) = IV(m ,n)!a ~i�rTarg(v(m,n)) o < a � 1 (5)

and (3) becomes

Ra(m,
n) = U*(m,n)Va(m ,n)

2 . 2 . 4  Performance Evaluation

In practice v(x ,y) and u(x ,y) are t vt  zero mean images. If the mean is

7



comparable to the variance of the image it adds a significant constant bias

to the correlatic.~ function and the relative sharpness of the peak is de-

creased. So it is desirable to make one of the images zero mean, which

in our case could be easily accomplished by setting the first element of the

DPi’ of one of the images to zero. To study the effects of FLR parameters,

misregisterations,and a-filter on the area correlation we define a

criterion, called signal to noise ratio (or S/N), as

S/N = 
Value of the Positive Peak
Standard Deviation of the Correlation function

2.3 Modeling of FLR Images

For analyzing area correlation techniques it is necessary to have a

model of the PSF of the FLR image. The model used in our experiments is

based on the theory (which is also supported by practical data) that terrain

ref lectiv ity is independen t of the viewing aspect angle except for extreme

angles.

Figure 1 shows the FLR geometry. Scanning an of fse t  antenna pat tern

around the vertica l axis results in a ring or doughnut shaped coverage of

ground . At any scan position , the resolution cells are bounded by the an-

tenna half-power elliptical contour and a radial width equal to one-half

of the vertical ground intercept of the radar pulse length. This width is

a secant function of the range vector depression angle e. The parameters

of the half-power ellipse are also given in Figure 1. In polar coord inates

the FLR signal could be expressed in terms of the reference scene , u(r,q) by

~.,cp (r) L2 ( r)
v(r,p) = u(r+s , cp fi!)d’i’ds (6)

• -~~~(r) ~‘-L 1(r)

8
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where r = htane , cp0(r) is the angular wid th of the elliptical contour from

• its major axis, 21
(r) and t2(r) correspond to the inner and outer ground

intercept of radar pulse width around the point and h is the height of the

radar.

Equation (6) could be generalized by associating a non-unity kernel

(or we ighting function) as

~-.p (r) 
~~ 2 (r)

v(r ,cp) \~ 
° w(r ,s;p, f)u(r+s,c P?)cFfds (7)

Euqation (7) could be simplified by making the assumptions that the

we i ght ing function is separable and is invariant with respect to p, giving

(~ C~ (r) p .22 (r)
v(r ,cp) = ° \~ 

w 1(r , s)w 2 (Y)u(r+s ,cp-lj!)dYd s (8)
‘- -~p (r) ~- -L 1(r)

Note that the point spread function (PSF) as defined above is spatially vary-

ing so that conventional Fourier domain Wiener filtering is not app licable.

From the statistics of reference image and FLR image the point spread

function cou ld be iden t i f ied by assuming some models of the weighting func-

tions , e.g. Caussain density, and then identifying the parameters of these

models by using mean square or other criteria .

2.4 Experimental Simulation Results

Figure 2 shows a 256 x 256 remotely sensed six-bit image . Cons idering

this as only a single quadrant of a reference image,a 900 segment of an

FLR image was simulated using Eqn. (6). The blur-factor as reported in

our experiment is roughly a measure of ave rage number of samples of the

re fe rence image sun~ned to get the intensity at each sample of FLR. Also ,

the FLR images have been normalized to have the same mean square energy as

1A a
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Squa re ERTS Image Used as SLR Image

~~~~~~~~~~~~~~~~ 
- .

~~~~~

-

,. . s.— .’ ~ ~~~

~l1~~~~~~~~~1

.1

‘ ‘ I

FIGURE 3

SLR Image of Figure 2 With Axes Scaled by a Factor 0.98
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the refe rence image within the area covered by the FLR image.

Figure 3 shows a scaled reference image corresponding to Figure 2 with

a scale factor of 0.98. To simulate a doughnut-shaped quadrant of an FLR

ima ge a doughnut-shaped quadrant of the square reference image was created

and samp led in polar coordinates with 4 samples per degree in azimuth and 200

samples along the elevation. Figure 4 shows this correspond ing to Figure 2.

From this three different FLR images as discussed in Section 2.3 with para-

meters shown in Table I were obtained. Figure 5 shows one such image.

Both in Figure 4 and Figure 5 the image intensity outside the doughnut is

replaced by its mean intensity. For calculating the correlation function the

polar FLR images were transformed to cartesian coordinates square images.

Figure 6 shows the FLR image of Figure 5 with a 2°misregis tration. Figure

7 and Figure 8 show the logarithm of the magnitude of the discrete Fourier

• transform of the images of Figure 2 and Figure 5 respectively. Figure 9

and Figure 10 are the high pass filtered images correspond ing to the FLR

image of Figure 5.

The results of digital correlation experiments are summarized in Table

II. Figure 11 and Figure 12 show the correlation function and its cross-

section for images of Figure 2 and Figure 4. To improve correlation peaks

the reference image was high pass filtered (a = .05).

Figures 13-16 show the three dimensional plots of the correlation

functions for some of the entries of Table II. Here every fourth sample of

the 256 x 256 correlation function, has been plotted . Figures 17-23 show

the horizontal and the vertical cross-sections of some of the correlation

f u nctions across the peak.

Figure 24 shows the effect of FLR beam pulse width product (or equiva-

lently blur factor) on the signal to noise ratio for the origina l and filtered

reference image. Figure 25 shows the effect of scaling the axes of the

12 
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reference image on the signal to noise ratio. Figure 26 shows the effects

of rotating the FLR image and the combined effect of scaling and rotation

on the signal to noise ratio. Finally, Figure 27 shows the effect of the

filter parameter a on the signal to noise ratio.

• 

. 
These experiments show that high-pass filtering improves the correlation

results considerably. Fro~. Figure 24 we see that the signal to noise ratio

of the cross-correlation between the reference image and FLR images is much

lower than that of the autocorrelation of reference image even for small

amount of blur. This is mostly because of the space-variant nature of the

FLR blurring mechanism rather than the low resolution of the FLR images.

Figure 25 shows that the signal to noise ratio drops sharply with

the scaling of axes and is almost linear. In the presence of large rota-

tional misregisteration the scaling has only marginal effect, as could be

seen from Figure 26.

2.5 Conclusions and Future Work

As demonstrated by results in the previous section the enhancement of

the on-board generated FLR images using Fourier domain high pass filtering

is quite useful in a more unambiguous location of the correlation peak.

Although this simple and adhoc technique gives good results , it does not

perform the optimum filtering of the point spread function of the FLR, which

is space-variant along elevation. A better technique is to identify the

models of the PSF and then do easily implementable optimum or sub-optimum

filtering .

Stochastic modeling of the reference image and the FLR image is another

area for future research. A considerable progress has been made recently in

this area for certain class óf images (see Appendixes I and II).  These
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models could be used for identif icat ion of PSF and also in applying the

stat ist ical  detection theory to identify and locate the correlation peak.
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FIGURE 4

Ring-shaped (Radial) SLR Image obtained from Image of Fig. 2
with intensity in the area outside the r~ng set equal to the
mean intens i ty of the image inside the ring
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FIGURE 5

FLR- l Image (see Table I for parameters)
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FIGURE 6

FLR-l Image of Figure 5 Rotated Clockwise by 20
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FIGURE 7
Logarithm of the magnitude of the Fourier transform of

SLR Image of Figure 2
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FIGUR E 8

Logari thm of the magnitude of the Fourie r trans form of
FLR Image of Figu re 5

17

— .A,



-

~~~~~~~

I.. ..

- 

. _ .~~~_
, ~~~~~~~~~ ~1

02B

FIGURE 9
a-Filtered image of the FLR Image of Figure 5 , a = 0.8

FIGUR E 10

a-Filtered image of the FLR image of Figure 5, a = 0.6
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Figure  i i :  Three Dimensiona l Plot  of the C o r r e l a t i o n  Func t ion  of
Square SLR and Ring-shaped SLR image (shown in Fig. 2 &
Fig. 4)
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Figure 13: Three dimensiona l p lot of the cross c o r re l a t i on  f u n c t i o n  of
the SLR and FLR- 2 images
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Figure 14: Three d imensiona l p lot of the cross correlation function of
the Filtered SLR (a .5) and FLR-2 images
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Figure 15: Three dimensiona l p lot of the cro ss co r re l a t ion  f u n c t i o n  of
the scaled (27,) and filtered (a = .5) SLR image and rotated
(2°) FLR- l image
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Figure 16: Three d imensiona l plot of the cross correlation of the -

filtered (a = .5) SLR and filtered (a = . 5) FLR- l image
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TA BLE II

AREA CORRELATION RESULTS
a

REFERENCE IMAGE IMAGE TO BE CORRELATED
______ __________ __________ _________ -__________ __________ SIGNAL

FILTER SCALING FILTER ROTATION TOS. PA RAMETER FACTOR PARAM~ rER IN NOISE PEAK
N. NAME s NAME a DEGREES RATIO LOCATIO

I —___ _ _ _ _  — _ _ _ _ _  _ _ _

1. SLR 1.0 1.0 RADIAL- 1.0 0.0 5.27 (0,0)
SLR

2. SLR 1.0 1.0 FLR~-l 1.0 0.0 2.66 ~. (0,0)

3. SLR 1.0 1.0 FLR—2 1.0 0.0 2.59 (0,0)

4. SLR 1.0 1.0 FLR— 3 1.0 0.0 2.42 (0,0)

5. SLR 0.5 1.0 FLR— l 1.0 0.0 8.62 (0,0)

6. SLR 0.5 1.0 FLR- 2 1.0 0.0 8.14 (0,0)

7. SLR 0,5 1.0 FLR—3 1.0 0.0 7.13 (0,0)

8. SLR 0.5 - 1.0 FLR— l 1.0 ‘ 0.5 7.51 (-1,1)

9. SLR 0.5 1.0 FLR-l 1.0 1.0 6.27 (-2 ,3)

10. SLR 0.5 1.0 FLR—l 1.0 2.0  4.86 (-4 ,6)

11. SLR 0,5 1.0 FLR—l 1.0 -~ 4.0 3.16 (-8 , 12

12. SLR 0.5 0.99 FLR—l 1.0 0.0 7.56 (-1 ,-I

13. SLR 0.5 0.98 FLR—l 1.0 - 0.0 6.42 (-3,-2

14. SLR 0.5 0.96 FLR— l 1.0 0.0 4.53 (5 ,4)

15. SLR 0.5 0.98 FLR— l 1.0 0.5 6.10 (-4,0)

16. SLR 0.5 0.98 FLR— 1. 1.0 1.0 5.57 (-5,1)
17. SLR 0.5 0.98 FLR— l 1.0 2.0 4.74 (-7,4)
18. SLR , 0.5 

- 
1.0 FLR— 1 0.8 : 0.0 15.16 (0,0)

19. SLR 0.5 1.0 F ’LR—l 0. 6 0.0 26.45 (0,0)

20. SLR • 0.5 1.0 FLR— l 0.5 0 .0 34 . 06 (0 ,0) -
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III. STOCHASTIC IMAGE MODELING AND APPLICATION S

The simplest stochastic model of an image, at least conceptually, is

the joint probability density function. However, for practical reasons

(of d imensionali ty) , it is often convenient to work with a two diiiens iona l

stochastic difference (or differential) equation representation. State

variable models, which convert two dimensional images into a sequence of

one dimensiona l vectors , have been developed and implemented for a variety

of image restbration problems by Nahi, Silverman, et. al Ll ,2]. Ekstrom

and Woods 13j have suggested a two dimensional spectral factorizatlon techni-

que for develop ing non-symmetric half plane (NSHP) models which can be used

for recursive image processing applications .

We have demonst ra ted that the theory of Partial Differentia l Equations

(PDEs ) provides a strong framework for studying many problems in image pro-

cessing L4,5j. Many of these models have been found to be superior to a -

widely used separable covariance mode l for images in image restoration ap-

plications t6~
. These models are divided into three classes according to

the classification of PDEs as hyperbolic , parabolic and elliptic equations .

It has been shown in 1~
] that these classes of PDEs could realize different

types of correlation functions. Thus, a given correlation function may be

best realized (in terms of the minimal order of the PDE) by a particular

class of PDE5. For example , certain isotropic correlation functions which

fit low resolution images quite well , are best realized by elliptic PDE

models.

Our results on image restoration have demonstrated that each class of

PDEs leads to a different type of computationa l algorithm. For example ,

the hyperbolic equations yield causal vector-recursive , Kalman filtering

type algorithms ; the parabolic equations yie ld semi-causal algorithms ,i.e.,

38
a 

- -  - —-~~~~- ---~~~ - -.-~~~—-~~~~~~~ - --



- — - --~~~~~ -•. — - - -- --- ~~

algorithms which are causal recurs ive in one dimension and noncausal in the

other; the elliptic equations yield noncausal algorithms. These different

structures were shown to give new and d i f f e ren t  computing architectures as

well as performance bounds on the processing technique.

3.1 Causal Models and Hyperbolic PDEs

Consider the operation equa t ion defined on (O ,~~) x (0 ,~~)

~~ 1~~
= ~~~~~+a 1~~~~

+a 2~~~~ +a 3
v (9)

where v = v(x,y). Here is a second order hyperbolic PDE operator such

that ~~ 1
v(x ,y) = f(x ,y) is a well posed initial value problem. A finite

difference approximation of this equation gives a discrete random field

representation of the type (to be called Cl)

u~~~ = a
i
ui_i ,j 

+ a
2u~~~..1 

_a
3
u
i..l ,j_l + e

~~~ 
(10)

This is a well known model used for DP~M coding of images. For a3 
= a

1
a
2

this equation is an exact realization of the separable covariance model

given by

R(k,L) = ELul j
ui+k j+L] 

= a2p~~~
+

~~~

2 2
where E[Uj ,J

] 0 and E[u~,~~] 
= a

The various parameters of (10), are identified as a1 
= a

2 
= p ,  8

3 
=

Et.c~~3~ 
= 0, E

~.
cjjei+k j+L] 

= (1 - p
2
)
2
8k 08L and 6n,m represents the

Kronecker delta function.
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3.2 Semicausal Models and Parabolic PDEs

Consider the heat equation operator

~~~~ v = v  - v  + av (11)
- . - 2 y xx

This is a second order parabolic PDE operator and leads to a well posed

initia l value problem in y dimension and well posed boundary value problem

in x dimension. A finite discrete approximation of this gives a semicausal -

representation (Sd ), which is causal in j variable and noncausal in i vari-

able , of the form

u
~~k 

= a(u
~..1~~ 

+ u
~+1j

) + V u
~,j_1 

÷ 
~ij’ 

(12)

where la! < ~ < I and 12a + ~YI < I

This and other semicausal models lead to coinputationally desirable , the sd-

called , hybrid algorithms. A hybrid algorithm is a recursive algorithm ob-

tained after transforming each row (or column) of the image by a unitary

transform . For such models , it has been shown that a 2-dimens iona l image

can be decomposed into a sequence o f one d imensional, independent Markov

processes. The statistics of certain semicausal models have been shown to

f i t  high resolution images quite well [4,6].

3.3 Noncausal Models and Elliptic PDEs

Consider the well known Poisson operator equation

~~~3V = Vxx + v~~ + av (13)

40
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This is a boundary value elliptic PDE. Such equations have been shown to

yie ld noncausal stochastic image models and have shown to fit, quite well ,

satellite and other remote ly sensed images, which have nearly isotropic

covariance functions. Noncausal models have also been useful for represent-

ing images with separable covariance functions r4,b]. The adavantage ot

such representations is that often , they yie ld computationally fast Kar-

hunen Loeve (KL) expansions of image data and have proven useful in resto-

ration and data compression ot images.

3.4 Application to Rdar Image Area CorreLation Technique s

For the sake of clarity in understanding , we shall work here with one

dimensional images defined over an interva l t-a ,a]. Correspond ing ly the

area corre lation is defined as

c (x) = ~a + x)I
2
(~ )d~ ( l4a)

In practice the reference image I.~ could be considered as representing the

territh features very accurately and 12 a b lurred image of the terrain

given as

12 (x) = 
S

n(x - ~)I 1(~ )d~ , (14b)

where h(x) is the point spread function of the imaging optics. As a first

approx imation h(x) is assumed to be spatia l ly invariant. Extension to spa-

tially variant case is possible (although the computational complexity may

increase). Combining (14a) and (l4b) we get
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c(x) = ~a S 5 h(~ - ~‘)I1W)I1
(x + ~)d~ d~~’ (l4c)

For evaluation of an area correlation system, generally, the first two mo-

ments of c(x) are needed . From above these are obtained , assuming I~ to be

a stationary process whose autocorrelation is R11, as

m
l

(x) ~ E[c(x13 = h(~ - 
~
‘)R11(~ - ~~

‘+ x)d~d~~’ (15a)

m 2 (x) E[c 2 (x)]= ~a 
5 

ç ~ h(~ - r)h(~ 
- 

~~ )EtI 1
(~ ’)I

1(x +

d~d~
’d!)d1~

’ (15b)

Equations (15a) and (15b) can be evaluated , at least in principle , if the

second and fourth order statistics of the random process I~ are known.

Measurement of such statistics from available data is impractical even when

stationarity and ergodicity assumptions are made. This is because in (15b),

for an N point discretization of 1
1
(x) , at least N3 coefficients for the

fourth order expectation will be required . For two dimensional images,

the dimensionality will be 0(N6). Hence, it is desirable to have a dif-

ferent stochastic representation for I~ so that all the statistica l para-

meters can be calculated from it. One way is to determine a stochastic PDE

representation of the two dimensional image 1
1
(x ,y) and determine all the

statistics from that model. This approach would be the 2 d imensional equi-

valent of calculation of, say, the autocorrelation function of a one d imen-

sional random process from its stochas tic , ordinary differential equation

model. The difference would be that one would have to solve PDEs for two

d imensional variables.
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IV. REAL-TIME RF SIMULATION OF RE-ENTRY VEHICLES —

The availability of an image model is particularly useful in real time

simulation of radar imaging systems. For example, in a hardware in the loop

simulation of a termina l guidance system at the Advanced S imulation Center

of U.S. MIRADdOM, Redstone Arsenal, Alabama , it is planned to gene rate , in 
-

rea l t ime , image signals as shown in Fig. 28. Here, the re-entry vehicle

(RV) flight hardware (Radar scanning antenna, the radar receiver electronics ,

and the correlator unit) is mounted at one end of a chamber and the scanning

antenna (i.e., the FLR) is allowed to rotate, as it operates in the real

environment. This radar antenna scans a large array of antennas located

at the other end of the RFSS chamber. Digital image signals generated by a

digi tal  computer are converted to analog video s ignals and are put on Radio

Frequency (RF) carrier pulses for transmission from the array . By a sophis-

ticated computer controlled switching method , signals are radiated from

the array such that they are synchronous with the scanning antenna position. -

The signal powe r leve ls and array position control are fine enough to simu-

late the real time radar return signals received by the RV. The reference

and the live FIR images are updated in real time as the trajectory of the

RV changes. A sequence of reference images is known in advance at few

fixed points on the trajectory. The reference image at any po int is prepared

off l ine and the relevant images stored in advance for signa l generation.

Fig. 29 shows a more detailed design architecture developed by the prin-

cipal investigator during an LRCP research effort for a real time hard-

ware in the loop simulation (at U.S.  MI RA DCc*I) of an area-correlation system.

The principal  advantage of these s imulations is that by including complex

hardware in the simulation loop, realistic flight test data can be obtained

for system evaluation. This will of course minimize the number of actua l

test flights needed and will therefore reduce test costs.
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APPLICATION OF PARTIAL DIFFERENTIAL EQIJATIONS IN IMAGE RESTORATION

by

An il K. Jam
Jaawan t R. Jam

Department of Electrical Engtheering
State University of New York at Buffalo

Bell Hall , Amhers t Campus
Bu f f a l o , New York 14260

ABSTRACT column (or row) of the image , and have been considered
by Jam (9], Murphy and Silverman [10] and others [ii .

Stochastic representation of discrete images by 12]. Nonrecursive or transform domain algorithms arise
partial differential equations proposed earlier in (1] quite naturally for noncausal models and lead to smooth—
is used for filtering of noisy images. Comparisons ing equations very similar to discrete Fourier Trans-
among various representations and their relative form (OFT) domain Weiner filters. Similar algorithms
effectiveness in modeling the actual statistics of the have been studied previously in 191 .
images is shown by examples. Certain image decompoa— Although some of the image models (and their assoc-
itions resulting in fast filtering algorithms are iated filter equations) considered here have been
given. The results are also compared with spatial studied earlier(9,l3 ,19),this paper reconsideres these
averaging and Fourier domain Wiener filters. Results as well as some new models in the more general framework
shov superiority of noncausal and semicausal models of PDEs. This has several advantages. First , the well
over causal and/or separable covariance models, developed theory of PDEs offers many analytical answers

to problems related to stability. stat ionarity, perfor-
mance bounds , etc. Second , the different existing nu—

I. INTRODUCTION merical methods for solving PDEs hold promising possi-
b I,liciea for implementing filter solutions. Finally,

In an earlier paper [1] image representation the POE theory lends insight into certain filtering
by partial differential equations (PDE5) was considered, phenomena. An example of this is shown in section ~,
It was shown that corresponding to the PDE classifies— to explain the performance of a spatial averag ing
tiori of hyperbolic , parabolic ,and elliptic systems , filter. Several filtering experiments or, actual images
three different stochastic representations viz. • causal, and comparisons of different models , old and new ,
s~micausal ,and noncausal representatloits arc real ized , ex emp l if y  the utili ty of our approach .
These representations have different spatial structures In section 2 we briefly review the results of I l l
and are realizations of different type of covariance that are used here. Specifically, the different models
functions. For example , certain elliptic equations can identified in [11 are summarized and some notation is
realize certain isotrop ic covariance functions which established . In section 3, 4 and 5 the filtering al gor—
cannot be realized by hyperbolic or parabolic equations. ithms associated with the causal , semi—causal , and
On the other hand certain covariance functions could be noncausal models respectively, are described. Filter Lag
realized by all the three classes of representations , experiments on four different images have been performed.
Use of PilEs directly for image representation bypas— In section 6, the results of these experiments and their
sea the difficult problem of two dimensional spectral mutual comparisions as well as with standard Fourier
factorization. The experimental results of [1,2] have domain Wiener filtering techniques are discussed . Con—
shown that the covariance functions realized by some clusions and possible extensions of this work are given
of the PilEs approximate the actual covariance of dif— in section 7.
ferent image data better than the commonly used covari—
ance function models for those image data.

In this paper we consider the problem of linear 2. PJE IMAGE MOUEL~$
filtering of noisy images represented by different POE
model,. It is shown that the causal , semicausal , and Stochastic PDEs have been studied earlier for
noncausal models give ri se to recursive, hybrid or various applications (14—18]. In a recent paper Jam
semi—recursive , and transform domain or nonrecursive (I] has studied the possibilities of modeling actual
f i lter ing al gorithms. Recursive filtering for images image data by POts and many different models have been
has been considered earlier by many researchers (3—7]. suggested . Table I summarizes some of those models
Typ ically in these approaches, one insists on a causal which we will be studying here for filtering applica—
image representation e.g., state variable or two dimen— tions.We start with a POE operator L(a/~3x ,a/~y) and
sional autoregressive models , such that recur8ive fil— approximate it by discrete operator D(51 , 

5
2) , ob tai ned

tering equations of Kslman and Bucy, or equivalentl y ,  by a su itably chosen finite difference method. Then
those of Aasn.-.es and Kailath (8) are applicable. By we assume an image representation of the form
hybrid or semirecursive filtering we mean a filtering 

D —method which is non—recursive in one of the image nl j , j
, 1 1 j ~

demensions and is recursive in the other. Algorithms where ii • represents the (relative) brightness of the
of this type include those vector recursive algorithms zero me~&unit variance image at the point (i,j) m r
where the state variable vector contains an entire — ‘~~i ,j~” and is a two dimensional zero mean dis-

________________ crete white noik~ or some sort of moving average process
Presented at the IEEE Computer Society Conference with absolutely continuous spectral density f u n c t i o n .

on Pattern Recognition and Image Processing, Clear ly , a
1 
and a in 

~~~~~~~ 
can also be chosen to be -

Rensselaer Polytechnic Institute , Troy , N.Y., the two dimenstonil ~ — transform variables. If we de—
June (,—8, 1977. note S(a 1,.~ ) to be the spectral denSity function of
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{c 1 for ., exp( jw ~ — exp (jw ), then the spec— from a set of one dimensional vector recursive equac— -

tr~t
1den sity ~unctioA of (u i j ) is ‘iven by tons .

If u denotes the Nxl column vector of an NxM image
(s ,s ) — S(a

1
,e2
) / (D(s 1 .e 2) . D( a j

’
~
;
2~
)}. then (2) ,~an be written in vector form asu 1 2

he covar iance f u n c t ion of (u } is ob tai yetl quite L
1
u
, 

_L
2
u~ + e~+b~. lg jgM, (3)

asily by the Fourier inverse ~!~S (e~”l , e~
U2 ) ,  which

could be accom~ ishe d by a sui tab 1~ FF1 algorithm, where L and L are nonsingular lower triangular Toe—
Tab le I lists the forms of S chosen for various models. plitz mitrices

2
and b are Nxl vectors containing initial

The values of different parameters identified for these conditions . T f b i~ orthogonal to u and and if
models , fo r  256x 256 G i r l  im~ge ,are listed in Table it is a white noise process (for a

3
a~~~ this Is true)II. Here ~“ represents ER

1 
and is the value of and if we define

~~~~~~~ S~ (0 ,0). Table I also shows ’~ he spa tial struc ture of Ma r kov process ~ 

— C
,
~ + b~ then (33 ~ecoe.es a vector

the different models arising from a finite difference

~~i~1 
-

approximation of the operator L. Here , if u corres— u — L
I~~flds to the point marked A , then the spatial 4tructure 

j 1
1 L2 u 1_ 1 + f~ . (4)

shows all other points that are used directly in the The observations of (1) can be written in a vector form .
prediction of A. The stability of various models and ~~
their stationarity (asymptotically) is assured by im—
posing restrictions on the model parameters which are Yj 

— U
j 

+ ri~ . (5)
consistent with the well posedness of the original
PilEs. The parameters of Table II satisfy those re— Various vector recursive filtering equations can now be

• strictiona and realize stationary fields. Parameters written quite straightforwardly. For example , if a
for some other images and related details can be found column vector is scanned at a time and the previously
in (1 ,21 . scanned vectors are used to predict the next columo

We will consider the simplest filtering problem vec tor , then the Kalman f i ltering equat ion for one
where the observations are given as step predictor can be written as

Y j ,j  
- U

i j  
+ fljj~ 

(1) 
~~~~ 

L~
1 L2 ~~~~~~~~ - 

~~~~~ ~~~~~ 
• (6)

where (i ,j) belongs to a set I , of in teger pairs where C is Kalman gain matrix that ia obtained by
and 

~~~~~ 
is a zero mean white Gaussian noise of solving~an associa ted Ricca t i equa tion . For a true

var ianc~, . The set I will be suitably defined for two dimensional recursive filter suppose the image is a
d ifferent image models as we proceed in the paper. We scalar scanned image , e.g., raster scanning , say f rom
would be interested in the various predictors , on—line top to bottom (along i) and left to right (along j).
filters and smoothers of u , given the observations For such a scanning the one step predictor ,
of (1). It should be notj’Ihat the models are is defined as the beat linear estimate of u

~+ljstationary for infinite images. To apply them for re— the observations upto the previous scan point i.e.,
storation of finite size images certain initial and/or y . The solution of such a recursive filter , resu lts
boundary conditions on the models will have to be ih’~ one step predictor given byspecified. If stationarity is to be retained , the
boundary conditions should be consistent with the coy— ui+l j  — X~~(t +1) (7)
ar iance function realized by the model. In practice ,
these consistent specifications may be difficult at where x i is a “state vector” for the estimates at
times and one may, instead , settle for a nonstationary 8canner~position (i,j )  and sa tisfies
model which is asymptotically stationary, by assuming

i+l i i 0a more convenient model for the boundary variables. x~ 
— x~ + h

~
v
i j  x~ — u

j. 
0~iiN—l (8)

In fact we will see that , implementation wise , some of
the simplest algorithms are obtained for nonstationary 

i—l
(but spatially invariant) models whose boundary con— v~~1 

— 
~~~~ X~ (i) 

(9)
dit ions are deterministic, This would result in sub—
optimality, which depends on image size, and may not Here x i is a Nxl column vector representing the bestalway s be significant compared to the error in modeling. 

estimale of jth column vector u given observations onlyThroughout the paper we will attempt to point out such
optiisality vs feasibility tradeoffs, up to Yjj ; v is the acalar~ scanner innovations

process , and ~~~~ bt is another gain vector and isa fun-
ction of C of (6) Note that the initial condition of
(8) requir~s first solving the vector recursive filter3. CAUSAL MODELS
equation (6) up to step j. Hence , we have to solve two
sets of vector equations i.e. , (6) and (8) one in theCausal models considered here result from a

hyperbolic system of PDE5 and have spatial structure horizontal (i) direction and the other in the vertical
(i) direc tion to obtain a two dimensional scanner re—of the form
cursive filter. The major computational effor t is in
the solu tion of the Ricca t~ equation for C and h

tm . For— 5
1’~i-~l,j 

+ 

~~~~~~~~~~~~~~~~~~~~~~~~ 
(2) 

large image size C and h can be rep1ace~ by t~air
steady state values~an~ th~ resul ting f i l ter equationsFor a. a

1
a2 this results in an often used separable 

then require about 0(N ) operations per vector stepcovariance function. Such a model has been con— 
(or a total of about 0(N3) operations). Further simpli—sidered by Habib! (6) for recursive filtering, but the 
ficattona are possible by noting that G becomes aequations developed there have been shown to be in 
Toeplitz matrix when t,j -

~~~ and (6) redu ces to convol—error by Strintzis (7). Recently Bary , et al (17) have
developed some asymp totic recursive f i l ters for  auch ation operations. For the separable model (i.e. for

models. More recently Wong (16) has mentioned that two 53 — ‘1~~2~ 
an iterative , smoo th ing filter is also

possible . U vs write (1) in matrix formdimensional recursive filter for the continuous equiva-
lent of this model exists and that the filtering equa—

(10)tione are rather complicated . Here ws consider the
recursive filtering equations for th. discrete model
of (2) and show that th..a equations may be obtained and if E[n~~~. ~k,tI — ‘ . then the
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smoothed estimate of the image using CI model can he For a nonsingu lar ma trix f], (14) will have a •in iqu e
found by itetative solution of tire following equat ion solution. From this in iqueness of u and linearity of
in the sine transform domain 12)* (14) it follows from (16) and (11) LI ~at u 4 has the

2 stochastic decomposition

Uk+l+ _
~~~

_ Q U~ ,1 Q — Y - 
~k ’ ~ — 0, (11) 

U
j  

- + u~ 1 
~ J i ~~. (18)

where 
o 2 The vec tor ~b is called the boundary response of u and

~ 
_~,

2 
a
2 D U D + —

~~
----

~~
—-— ~DU ~~~~~~~ D~ (12) is comp le teI~ de termined by t he i n i t i a l  and the bound ary

k n k B 2 It “ It ‘ values of the image. This decomposition would be orth-
ogonal if lb ) and (c ) are uncorre lated sequences i.e.,

a p
2
/(l— p2) ,

E (c 4b
T) — ~~• ‘V Itand Q and 0 are NxN matrices defined by ‘

The above cond ition is always satisfied for the SC2 model.

r Note that (16) is now a nonstationary Harkov process
I ‘ starting with a zero initial state. Using (18) in eqn.

q — — 
~ , ~i—j j —l (13) 

(5) the observations can be written as
j ,i o o b

0 , otherwise , 
y
1 

— ‘
~ 

+ u~ (19)

where

d11 — dN N  — l~ ~~~~ — 0, o therwise , where y~ — u + ru
1 
. (20)

o — p/ (l+p
2
). The reason we opt to solve (U) and (12) Now noting the fact that the discrete sine transform

in sine transform domain is that the sine transform ‘V diagonalises any tridiagonal symmetric Toeplitz mat-
diagonaliaes the matrices Q and 0 and then they could rix , such as P and Q~he vec tor equations (16), (17), (19)
be solved as se t of N scaler independent equations , and (20) can be converted into scal er decoup led se t of
thus resulting in computationa l savings. Details of causal Markov representations by taking their sine
derivations will be given elsewhere, transform. The Kalman filtering equations for the re-

sul ting equa tions in the Sine transform doma in are
given quite easily as follows.

4. SI24ICAUSAL MODELS
One Step predictor

If u deno tes the Nxl colu mn vector of an NxN
image theA , the semicausal models SC1 and SC2 given in 

2Table 1 can be written as c v~~+ ~~~~~~~~~~~~~~~~~~~ , v
0

O (21)

Qu —P u +r +b , Ii jg N (14) - 2 2 2 -

J 1— 1 i .1 c . ‘r
1

. f~ + d . a — 0
wher e Q is an NxN symmetric , tr idlagon a l , Toeplitz , - 2 — l
matrix defined in (13) ;  P — yl  for SC1 and P p Q  for (‘ +

SC2 models ; and b is a Nxl colan vector consisting of
only boundary vaiues identified as 2 2a (i) — E[e~ (i)) lgjgN.

a. (u
0 1,

O ,...,O ,u~~.1,1
)
T
, for Sd , On—line fil ter

b
1 

— — V + . f 
~~~~ 

— ~ ) / a  2 (22)
a.(u

03
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for Interpolator (Smoother) -

The statistics of could then be identified as y
1
.w

1 
+ (23)

E [c
1
] — 0 • for SC1 4 SC2 , 2 w

and 
2 

a
1 

— c.u
i
.w
j+l +f

1
(e
3
—v

1
)/ o 

‘ N+l — 0
1 6  , for Sd

T ~B j , k where,
(15)

Q for SC2 5~~~ ~~~~ v
1 ~ 

‘Vu
1
, e

1A,
’V Cj

The eeinicauaal sturcture of (14) is evident by c(t) • and d(i) — for Sd ,
noting the noncausa lity of any element u of the — l
image in the i variable and its causalit4’ln j varia— 0(1) — p and d(i) — A

i 
for SC2 .

ble. Any attemp t to reindex these equations as re-
cursive in the i variable would result in unstable All the above equations for filters ate decoupled in
causal systems and will no longer represent (asympto— the variable i and can be solved independently for
tically) stationary random fields [9). - each i.(The subscri pt I has been omitted for notational

Letting b con tain arbitrary boundary values ,0 
simplici ty). From these the spatial domain image es—

rando~ or detelministic , we define two processes u timates are given by inverse unitary transformation
and u ~~ (~ “1 — ~PT — ‘r ) , i.e.

I * 0* b * bo o o U u + u ~~‘Vv + u ~ , etc .Q — P u
1_ 1 + e

,1~ 
u
0 

— 0 (16) 1 3 i I I
and b b b The sezuicausal model recursive algori thm is , very aim—

Q u
1 

— P ui_ I + b
1
, u0 — u0 . (17) ply, as follows. Frau. the given boundary values (or

*The sine transform is related to the discrete Fourier transform and baa a fast implementation algorithm similar
to FYI algorithm. THIS PAGE IS BE~ i c~UALITY ?1~~~~~ajj4
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t h e i r e s t ima tes)  first calculate u and determine the ti c. In that. case , these are e s t im a t ed  f i r s t  and are
modified obse rva t ions  y°. Then tr ~*n s t o r m  y° b y t i r e  us~~i to d c i e rm l n e  (I ” . Thi s  w i l l  mat , ’ ‘or gt-h,-m~- e l i —
( I  I r~.u ) Sine t r au s t  orm ~nd solve the desi red  r ecu r s ive  g i r t l y  sui,opt Imal although i t s  a i g n i  I li Circe
f i l t e r  e q ua t i o n s .  The inverse  t r a n s for m o i i o n  of the as the image size  I n c r e a s e s .  See 19] for an analysis
r e c u r s i v e  f i l t e r  es t imate  and adding 0b gives the de- of boundary effects.
s i red  f i l t e r e d  image vec to r .  For detaIls of SC2 model

~~~ [9 ) .  6. EXAMPLES A1~I) DISCUSS I ON

The f i l t e r i n g  t echn iques  discussed in the  pre—
5. NONCAUSAL MODELS vious sections wet , ’  implemented on fou r  65x65 blocks

of four 256x2 56 images corrupted by white Gaussian
From the spatial structures of the noncausal noise The Signal to Noise ratio (S/N) values of 1 .

mo dels Nd , NC2 aiid NC3 (see Table I) it can be seen 2 , and 5 were used . This ratio Is defined as
that the y are nonrecursive in both tire indices I and 

~~
. 

Standard deviation of the signalAny attempt to reindex theta so as to y ield a rec ursive S/N — 
Standard devia t ion of the  noise -

relati on in either of the indices would result In an
u nstable system . Let U be an NxN image matrix and Ii The va rious models are compared mutually as well as
be an N2x1 ve ctor obtained by the lexicographic order— with thei r corresponding Fourier domain Wiener filters
ing of U , then the noncausal models can be Written in 

and spatial averaging filters. The spa tia l  averaging
the form filter averages each pixel with the nearest four points ,

i.e.,j j 3  - + (24)  
*

where  J is an N 2xN 2 m a t r i x , is the N 2xl vector cor— 
— i •j

respon~ ing to the m a t r i x  e containing {c
~ 

}, and B For causal model Cl the iterative solution of (II)is a N xl vector whose ent r ies  depend only An the and (12) was used . For solving semicaussi and non-boundary values. From (24) one gets the decomposition causal f i l t e r  equations the boundary values were f i r s t

— + jjb or u — u°+ ub (25) est imated separa te ly .  For these mode l s  the  size of
the image block U was taken to be 63x63 and w i t h  houn-

— o — 1— 
, — ~~~~~ ~~ . (26) dartes the t o t a l  block size becomes 65x65. The f o u rwhere U 3 £ boundary vectors  were est imated independent ly  u s i n g  one

Note tha t  jjb is completely determined f rom the boundary d imens iona l  Fourier—Wiener  f i l t e r  and f i r s t  order Markov
s t a t i s t i c s .

values  and is called the boundary response. Let These boundary est imates  were used ( ins tead of the
R ~ E 1~~~~T

1 = 32 1 ( 2 7 )  actual boundary values) in computing the boundary  re—
£ -

then f rom (26)  and ( 2 7 )  the covariance m a t r i x  of U° is sponse func t ions.  For NC2 model two boundaries  on each
side of the  image are needed and we have assumed theobtained as outer  most boundaries  to be zero.

~~~ E [U°.U° )‘ 82J 11J ’l . (28) Tables I I I , IV , and V show the comparisons among
the pe r fo rmance  of various filters for S/N of 1 ,2 andThe structures of the matr ices  J and I r e su l t ing  f rom 5 respec t ive ly .  The Cl , SC2 and NC3 . a l l  correspond

the PDEs considered is such tha t  the Kronecker product to the separable  covariance model and hence the i r  re—
~~~~+ o f  the Sine t r a n s f o r m  ‘V con ta ins  all the eigen— su l t a  d i f f e r  only in terms of the requ i rement s  ofvectors  of J and I fo r  NC 1 and NC3 models (For NC2 knowledge of the boundaries .  As expected , t h e i r  per—model t h i s  is s t i l l  a good a p p r o x i m a t i o n) .  There fo re  f t  is q u i t e  close and the  d i f f e r e n c e  depends on
‘V~~ ’V becomes t h e  Karhunen Loeve ( RI. ) tr a n s f o r m  of U .  how good are the boundary e s t ima te s .  T h e i r  poor per—
Hence , if fot -mance for  the  blocks of the MOON and ERT S images

—0 0 0
— (4’V). U or ~ — ~~ ~~~, (29)  was found to be due to the f a c t  t ha t  the one step cor-

relation parameter , p, for these blocks was si gnifican—
the r, V0 is the K— I. transformations of U° and its ele— tly different from the one measured for the larger
ments will be uncorrelated . As before , the observa— 256x256 images. On the other han d , th~ o ther  models
t ions can also be decomposed to give (SC NC1 and NC2) perform relatively very well on

these blocks . This implies  that  the l a t t e r  models
y — + , (30) are much more s table , i. e . ,  they are r e l a t i v e ly  in-

sens i t ive  to the  local  changes in s t dt i s t i c s .where 
Y°— U° + r~ . 

‘ (31) The superior performance of the NCI and SCI models
is evident f rom their  f i l t e r  per formances .  Except far

Now if the boundary values (or equivalent lv 1J0 ) were the couple image block the pe r fo r mance of NC 1 is the
deter ministic we can obtain the Wiener filter equa— best in almost all the cases. In most cases NC2 p er—
dons for (25) and (31) in KL transform (‘I’) domain as forms better than the separable models but is poorer
N2 decoupled scaler equations and are found to be than NCI and SCI models, The superior performance of

these models may be attributed to the superiority of
their fitting to the image statistics.

* 
13
2
a1,1 

+ o~
2 .L i j~ 

c
i,j~~~i -j The si mple , adhoc, Spatial Averaging filter perfo rms

‘Ji j  — ___________________________ su rp r i s ing ly  well , especially for moderate signal to
8
2 

+ a 
2~~ 2 /k~ 

1!i,j~ N. 
noise ra tios . Note that it perform s better than the

i 1, j  Cl , SC2 and NC3 models. This can be explaine d by the
2 2 fac t that the transfer function of the spatial avera g— -

where V * VU’V B ‘YY’V C ‘fEY o — E m 
~‘~~i , j  ing filter is a fairly good approximation of theand It are the ;2 ei~envalues of ~ J and 

Fourier—Wiener filter corresponding to tire NCI model ,I res~ê~ tively . The optimal smoothed estimate of ~he 
which as we have seen here , is a very good model forimage ii then found by inverse sine t ransform of V

~ 
filtering of images. Tables III to V also show that
almost all the filters perform somewhat better than* *U — YV ‘V . their correspondin g Fourier domain Wiener fil ters.
This is because for finite size images , the Fou r ie r

In prac tice the boundary values may not be determini s— domain samples (of observations and the original data)
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are correlat eu and the corresponding Wiener filter is [Xl) J .W. Wood s, “Markov Image Modeling, “Proc . Conf .
su boptima l 120). The semicausal and noncriusri l filter 

~g~.iLi~ t~~and on troi , Clearw a ter Beach , Florida ,
are also suboptimal whenever the boundary values are pp. 596—600, Dec., 1976.
not known exactly. However , this auboptima lity is less
significant than the Fourier domain euboptimality. 112) E. wong, “Detection and Filtering for Two Dimen—

Fi g. 1 shows some of the images resulting from si onal Random Fielda ,” Proc . Conf. Decision and
the app lication of the foregoing fil ters . The perfor— Control , Clearwater Beach , Florid a , pp. 591—595,
stance differences due to different filters were also Dec., 1976.
eviden t on a Visual display.

[13] A.K. Jam and E. Angel , “Image Restoration , Mod-
eling and Reduc tion of Dimensionality,” IEEE

7. CONCLUSION S Trans . Compu ters , Vol. C—23 , No. 5. pp. 470—476,
May, 1974.

In conclusion , it was demonstrated that different
PDE classes yield differen t filter structures and also 114 ] P. Whi t t le , “On Stationary Processes in the
diff erent filter performances. Many of these models Plane ,” Biome trics , Vol . 41, pp. 434—449 , 1954.
o f f e r substa n t ial advantages , bo th in terms of compu-
tational complexity as well as filter performance , over (15) V. Heine , “Models for Two Dimensional Stationary
the conventional, separable image covariance models. Stochas t ic Processes,” Biozietrica , Vol. 42 ,
More general PDE models may be used to achieve even pp. 170—178 , 1955.
better results. Also , these models may be used for
othe r two dimensional signal processin g applications [16] E. Wong, “Recursive Filtering for TWo Dimensional
such as da ta compression , de tection , syn thesis ,etC. (211 . Random Fields ,” IEEE Trans. Inf. Theory, Vol. IT—
Inevitably, in all these applications numetical methods 21 , pp. 84-86 , Jan., 1975.
for solving PDEa will play a major role.

[17) P.E. Barry, R. Gran and C .R. Waters , “Two Dimen-
sional Fil tering: A State Estimator Approach ,”
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TABLE II
ACTUAL P ARAMETERS MEASURED FOR THE 256x256 GIRL IMAG E TO MATCH THE
l6x16 COVAR IANCE MATRIX OF ‘nI B IMAGE TO THAT OF THE MODEL FOR VARIOUS
MODELS.

S.
NO. MODEL PARAMETERS

Causal p — 0.962 , . 52 — (1—p
2
)
2 — 0.0055.

1. Cl

S.micausal a — 0.4275 , ‘I’ — 0.1415 , 8
2.50.0198.

2. SC1

Seiiicausal p — 0.962, 5
2— (l—p 2)

2/l-+p 2)•O.0029 ,
3. SC2 a —

Noncaosal a — O.2496,a
1
0.95. a g2.,o 0744

4. MCI

Noncausal a — 0.2494 , 8~ — 0.0053.
5. NC2
— 

Noncausal p - 0.962, B
2 (l_ p 2)

2 / ( l~~ 2
)
2
O .OOl5 ,

6. NC3 a — p/ ( l+ p 2 ) .

TABLE III
COI4PAKISION OF VARIOUS RESTORATION FILTERS IMPLEMENTED ON 65x65 CLOCK S OF
DIFFERENT NOISY IMAGES FOR SIGNAL TO NOISE RATIO —I . THE ENTRIES SHOW ThE
IMPROVEMENT IN SiGNAL TO NOISE RATIO IN DECIBELS.

S. FILTERING GIRL MOON COUPLE ERTS

- - NO. MODEL IMAGE IMAGE 
- 

IMAG E IMAGE

Four Poin t 
5.23 db 5.13 db 5.14 db 5.31 dbSpatial Averaging

2 
Causal Cl 9.12 db 7.20 db 8.10 db 8.42 db
Fourier—We iner
(F—W) Fil ter 8.38 db 7.32 db 7.98 db 8.24 db

Semica usal SCI 9.46 db 8.89 db 9.30 db 9.64 db
F—W Fil ter 8.55 db 8.78 db 8.32 db 8.82 db

Semica usal SC2 8.87 db 6.61 db 8.27 db 8.54 db
F—W Fil ter 8.38 db 7.32 db 7.98 db 8.24 db

Nonc ausal MCI 10.05 db 8.75 db 8.70 ,Jb 9.88 db
F—W Fil ter 9.00 db 8.58 db /.78 db 8.80 db

Noncatisal NC2 9.48 db 8.05 db 8.04 db 9.32 db
6. 

~—w Fil ter 8.24 db 7.87 db 7.02 db 8.08 db

Nonca usal NC) 8.92 db 6.59 db 8.31 db 8.46 db
F—H Fil ter 8.38 db 7.32 db 7.98 db 8.24 db
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TABLE IV
CONPARISWN OF VARIOUS IMAGE RESTORATION FiLTERS IMPLEMENTED ON 65x65 BLOCKS
OF DIFFERENT NOISY IMAGES FOR SIGNAL TO NOISE RATIO 2. THE ENTRIES SHOW THE
IMPROVEMENT IN SIGNAL TO NOISE RATIO IN DECIBELS.

S. FILTER ING GIRL MOON COUI ’LE ElliS
NO. MODEl. IMAGE IMAGE IMAGE IMAGE

~;ur
1
P~ii~ t

1 4.75 db 4.32 db 4.54 db 4.50 db

2 
Causal Cl 5.23 db 3.00 db 4.36 db 3.92 db
Fot4rier—Weiner
(F—U) Filter 4.59 db 3.01 db 4.34 db 3.62 db

Semicausal SC1 5.68 db 5.00 db 6.06 db 5.25 db
F—U Fil ter 4.82 db 4.82 db 5.09 db 4.64 db

Semicausal SC2 5.01 db 2.51 d b 4.44 db 3.88 db
F—U Fil ter 4.59 db 3.01 db 4.34 db 3.62 db

Concauaal NC1 6.64 db 5.29 db 5.54 db 5.85 db
F—H Fil ter 5.79 db 5.15 db 4.71 db 5.05 db

6 
Noncausol NC2 5 .77 db 4.00 db 4.24 db 4.65 db
F—H Filter 4.42 db 3.70 db 3.21 db 3.43 db

Nonca usal 8C3 5.02 db 2.49 db 4.44 db 3.82 db
F—H Filter 4.59 db 3.01 db 4.34 db 3.62 db

TABLE V
COMPARI S ION OF VARIOUS IMAGE RESTORATI ON F I L T E R S  ZNP LEMENTE1) 0/I 65xb~ BLOCKS
OF DIFFERENT NOISY IMAGES FOR SiGNAL TO NOISE RATIO 5. THE ENTRIES SHOW THE
IMPROVEMENT ZN SIGNAL TO NOiSE RATIO IN DECIBELS.

5. FILTERING GIRL MOON COUPLE ERTS
NO. MODEL IMAGE IMAG E IMAGE IMAGE

1. 
Four Poin t 

3.29 db 1.72 db 2.80 db 2.80 db
Spa tial Averaging

2 
Causal Cl 0.91 db —1.78 db 0.18 db —0.96 db
Fourier—Weiner
(F—W) Filter 0.49 db —1.86 db 0.22 db —1.22 db

Sem icausal SC1 2.11 db 1.08 db 2.81 db 1.14 db
F—U Filter 1.31 db 0.94 db 1.80 db 0.72 db

Semicausal SC2 0.78 db —1.92 db 0.22 db —1.04 db
F—H Fil ter 0.49 db —1.86 db 0.22 db —1.22 db

Noncausal NCI 2.66 db 2.02 dh 2.26 dh 2.60 db
F—U Filter 2.56 db 2.04 db 2.02 clb 2.36 db

Noncausal NC2 2.06 db —0.39 db 0.67 db 0.08 db
6. F-H Fil ter 0.56 db —0.64 db -0.68 db —1.09 db

Noncau sal NC) 0.79 db —2.01 db 0.22 db —1.02 db
F—H Fil ter 0.49 db —1.86 db 0.22 db —1.22 db
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APPENDIX II

1 . AN OPERATOR FACTORIZATION METHOD FOR RESTORATION OF BLIJRRED IMAGES

A problem of restoration of images blurred by space invariant point
spread functions (SIPSF) is considered. The SIPSF operator is factorized
as a sum of two matrices. The first term is a polynomia l of a noncirculant -

operator P and the second te rm is a Hankel matrix which affects only the
boundary observations. The image covariance matrix is also factorized into
two terms ; the covariance of the first term is a polynomia l in P and the se-
cond term depends on the boundary values of the image. Thus, by modifying
the image matrix by its boundary terms and the observations by the boundary
observations it is shown the Wiener filter equation is a function of the
operator P , and can be solved exactly via the eigenvector expansion of P.
The eigenvectors of the noncirculant matrix P are a set of orthronorma l
harmonic sinusoids called the Sine transform and the eigenvector expansion
of the Wiener filter equation can be numerically achieved via a fast Sine
transform algorithm which is related to the i.’ist Fourier transform algorithm.
The factorization therefore provides a fast  Wiener restoration scheme for
images and other random processes. Exampled on 255 x 255 images are given.

KEY WOIWS: Wiener Filtering, Karhunen Loeve Trans form , Image Restoration ,
Image Processing

2. PARTIAL DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE METHODS IN IMAGE PROCESSING

PART II: IMAGE RESTORATION

Application of Partial Differential Equation (PDE) models for restora-
tion of noisy images is considered, The hyperbolic, parabolic , and elliptic
classes of PDEs yield recursive, semirecuraive, and nonrecursive filtering
algorithms. The two dimensional recursive filter is equivalent to solving
two sets of filtering equations, one along the horizontal direction and
other along the vertical direction . The semirecursive filter can be imple-
mented by first transforming the image data along one of its dimensions, say
column, and then recursive filtering along each row independently. The non-
recursive filter leads to Fourier domain Wiener filtering type transform do-
main algorithm. Comparisons of the different PDE model filters are made by
implementing them on actual image data. Performances of these filters are
also compared with Fourier Wiener filtering and spatial averaging methods,
Performance bounds based on PDE model theory are calculated and implementa-
tion trade-offs of different algorithms are discussed .

KEY WORDS: Recursive Filtering , Two Dimensiona l Filtering, Ka lman Filtering ,
Wiener Filtering , Image Restoration, Partial Differential Equa-
t ions
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3. FRAME TO FRAME RESTORATION OF DIFFUSION IMAGES

Frame to frame image data is acquired in many applications such as Radar,
Biomedical, and Television imaging. In many situations , the imaging pheno-
menon can be modelled by a diffusion process. The sequence of image frames
obtained may represent the observations of that process. Here, we consider
the problem of recursive filtering of such images on a frame to frame basis.

- 

‘ The major difficulties are computational because of three d imensional struc- -

ture of the problem. In th is pape r a constan t coef f ic ien t  di ff us ion system
is used for an interframe image restoration problem. Also , a two d imensional
problem of restoration of blurred images can be solved by imbedd ing it in a
three dimensional recursive filtering prob lem without blur. The model struc-
ture leads to a computationally feasible filtering algorithm achieving large
reduction of dimensionality and is useful in real time hardware simulation
oz~ generation of such blurred image data as might occur in a forward looking
radar (FLR).

KEY WORDS: Image Restoration, Distributed Parameter Systems, Recursive
Filtering, Diffusion Equation, Image Simulation

4. FAST INVERTION OF BANDED TOEPLITZ MATRICES BY CIRCULA R DECOMPOSITION

Banded Toeplitz matrices of large size occur in many practica l problems

~ 1-6). Here the problem of inversion as well as solving simultaneous equa- -
tions of the type Hz a y, when H is a large banded Toeplitz matrix , is
considered . It is shown via certain circular decompositions of2H that such
equations may be exactly solved in O(Nlog9N) rather than in O(N ) computa- -

tionS as in Levinson-Trench algorithms . Purther, the algorithms of this
paper are non-recursive (a s compa red to the Levinson-Trench algorithms) and
afford parallel processor architectures and others such as transversal fil-
ters (173, where the computation time becomes proportional to N rather than
NiogN. Finally, a principle of matrix decomposition for fast inversion of
matrices is introduced as a generalization of the philosophy of this paper.

KEY WORDS: Toeplitz Matrix Inversion, Fast Matrix Inversion, Circulant
Matrices
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